9x^2=9x^2+36-x^2+100

Simple and best practice solution for 9x^2=9x^2+36-x^2+100 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9x^2=9x^2+36-x^2+100 equation:



9x^2=9x^2+36-x^2+100
We move all terms to the left:
9x^2-(9x^2+36-x^2+100)=0
We get rid of parentheses
9x^2-9x^2+x^2-36-100=0
We add all the numbers together, and all the variables
x^2-136=0
a = 1; b = 0; c = -136;
Δ = b2-4ac
Δ = 02-4·1·(-136)
Δ = 544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{544}=\sqrt{16*34}=\sqrt{16}*\sqrt{34}=4\sqrt{34}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{34}}{2*1}=\frac{0-4\sqrt{34}}{2} =-\frac{4\sqrt{34}}{2} =-2\sqrt{34} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{34}}{2*1}=\frac{0+4\sqrt{34}}{2} =\frac{4\sqrt{34}}{2} =2\sqrt{34} $

See similar equations:

| 3+8xx=109 | | 9x(x-4)=(2x+2)(x-4) | | 7x^2-42x-8=0 | | 6-2/3x=1/4(2x-4) | | 5x-8+9x-13=7 | | 12=5b | | x+14=x+13 | | x*10-25=-5 | | x*10-25=5 | | 0.08x=40x= | | -1,5+y=1,8 | | 227=15n+37 | | 4(m+4)^2=15 | | C=15n+37 | | 190-2x=180 | | 9x+20=227 | | 4z^2+18z-10=0 | | 1050=30t | | a(a-3)-40=0 | | 2x-20+40=180 | | 3x+2=1/5(20x+10) | | 3x+2=1/5(20x=10) | | h^2-2h-84=0 | | 4^2x-21(4^x)+80=0 | | X^2=100x36 | | 2x+1/2×=450 | | 6h-4=2h-6 | | g÷5678439=647589+679999.6574 | | 7n+4+8(5n+4)=180 | | 3x+11,x=12 | | −50=6a+286a+28 | | .17=25–2x–6 |

Equations solver categories